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NASA TT F-14,663

THEORETICAL MODEL OF THE DIURNAL VARIATIONS

OF THE TEMPERATURE, DENSITY, AND WINDS IN

THE EQUATORIAL THERMOSPHERE OF THE EARTH
DURING THE EQUINOX

M.N. Izakov, S.K. Morozov
and E.E. Schnol’

ABSTRACT. A model of the diurnal variations

of the structure and dynamics of the earth's
thermosphere is constructed for altitudes of
120-320 km by means of a numerical solution

of a system of hydrodynamic equations. The
basic features of the model agree with exper-
imental data. A substantial interconnection

is shown between the thermal regime: and |
movements. It is found that super-rotation
(presence of mean daily west-east wind com-
ponents) is a consequence of the influence

of the daily variations of ion concentrations
(due to the slowing down of ions) upon the
movement of neutral particles. In the branches
of the two-dimensional model arises a shock
wave, dividing the area where the gas moves
relative to the heat source with supersonic and
subsonic velocities.

INTRODUCTION | /3%

In a series of theoretical models of the thermosphere, it$
thermal regime and dynamics are considered separately, in view of
the complexity of the overall problem. Thus, in the models of |
Harris and Priester [1] and in later analogous models [2,3] in
the calculation of diurnal variations of temperature density,
the horizontal velocity relative to the earth (wind velocity) was
set equal to zero. On the other hand, in calculations of models

of global distribution of winds in the thermosphere [4-7]>» |
“the density and temperature distributions were pre-assigned. |

*Numbers in the right-hand margin indicate foreign pagination.



However, from a comparison of the results of calculations from !

experiments and from theoretical evaluations,it became clear
that a sufficiently complete description of the structure and
dynamics of the thermosphere is possible only in their intercon-
nection [8-12]. Attempts were undertaken at solutions to this
problem with a number of approximations and assumptions [13-16],
however the problem is still far from being solved.

In the aforementioned authors' works, a system_of_equatiqns‘
was formulated which is suitable for a description of the struc-
ture and dynamics of the thermosphere [10-12], the function of
thermosphere heating by shortwave solar radiation was studied
[19-21], and a method is developed for solving this system in /4
two-dimensional space for the description of diurnal B
variations in the equatorial thermosphere during the equinox
f16]. In the present study, results are presented of the solutloh
.0f a two-dimensional model with a refined heat source I .
and with the effect of ionic friction. The obtained model
of diurnal variations agrees in its basic features with experi-

mental data.
I. STATEMENT OF THE PROBLEM

I.1. 1Initial Equationi. As was shown in [10-12], the struc-
ture and dynamics of the thermosphere may be described by hydro-
‘dynamic equations in Navier-Stokes approximations at least to
altitudes of 300-500 km (where K2 << 1, K being the Knudsen number

= 4/H, 2 being the free path length of the molecule and H, the

altltude scale).-

In view of the complexity of the overall problem, it is ad-
visable initially to examine the two-dimensional space problem
for an equinox period. For this we shall assume a fixed spheri-
cal system of ordinates with its originlat the center of the earth
(t is the geocentric distance, ¢ is the longitudinal angle from
west to east, 6 is the latitudinal angle wherein the axis ¢ = 0,



."‘“

@‘ 0 directed along the earth-sun line) and we shall examine
processes occurring in the equatorial plane 6 = 0. Then the

equatlons of COHtlDUlty, motion, 1nternal energy, and equations

of state are written in the form [12]

%J‘f ;’1@*(1%) oy 'av (pe)- =0, ‘ (1)
L o 3 [ v )
J’ﬁa_ 7 u‘?d "{i'aw): 1{_7 (? 5') FTehnte (2)
o (3)  /
J x 3 /5
G - P D) 8
Pl %—”‘-};ﬂ +%%‘£’)=@sr Gre » =Pl 1) (4)
bop ,;f) :gﬂ T, (5)

where t is time, p, T, p, & are respectively density, temperature,
pressure, and molecular weight of the gas, R, is the universal

gas constant,n. , K are the coefficients of viscosity and heat con-
ductivity of the gas, p;» V; are the density and velocity of ions,
Vig is the frequency of non-neutral collisions, QST’ QIR are the
heat source and heat sink, determined below.

We note that these equations are analogous with the equations
of the boundary layer [10,12] with the difference that there the
pressure is constant in the direction perpendicular to the predomi-
nant direction of motion, and here it is variable (w1th helght)

Excludlng from consideration the datitudinal coordlnate 8, we

shall neglect the influence of meridian currents on the processes

in the equatorial plane. The feasibility of this assumption is
determined by the symmetry of the source QST relative to the equator
in an equinox period when the subsolar point lies on the equator, is

v, = 0. Moreover, the- simplifying assumption lsrnad ' that

a consequence of which we may assume that for § = Sp/ae = 0 and
8



ave/ae = 0 when 8 = 0. The fact that wind calculations are made
on more simplified schemes serves as a basis for this, but taking
6 into account, the small quantities 3v /ae are yielded in the
vicinity of the equator [6,7].

In calculations made thus far, the diurnal variations of the /6
composition of the thermosphere have not yet been taken into ac-
count, and therefore the quantities u, n, x are taken as functions
nf altitude from the available experimental data on the"altitdde

dlStIlbuthDS of concentratlons of basic atmospheric components.

Since the diurnal variations of u in the upper limit does not exceed
certain percentages, this simplification capnot significantly chang

the picture of diurnal variations of 5, T, v.

In view of the fact that the thin layer AT 200 km is exam-
1ned in comparlson with the radius of the earth Re, the follow- j

ing two insignificant simplifications were made. Firstly, the
gravitational force was assumed constant (g = const); secondly,

in equations (1-4) terms were omitted which were related to the |
sphericity of the problem having orders of At/R,, after which

the equations assumed the following form:

799 __9 (w55 (pw)-0, 1 (6)
[m J fvf:f_fz 1:33 ’?r(? )z‘{ﬂﬂ;n/%f’”%), (7)
| %5—.»—,03. (8)
'm"'af 1?‘?: bar)- 523 2(2¥) /” -3 ).

#er-—@”‘ff)y (Ve 'f/;o) J ®

P=pBaT, \ (10)



where B(t) = R,/y(T), Ty = R o + hy, h, being the altitude of the /7
e
lower boundary of the area examined.

I.2. Heat Source and Heat Sink. According to available

data, the fundamental heat source in the thermosphere is the ener-

gy of the shortwave solar radiation (ultraviolet and x-ray in a
range from 30 to 1800 A). Part of this energy is converted to heat

as a result of a large number of elementary processes of interaction
of photons with particles of the atmosphere (ionization, dissocia-

tiom, turbulence, impact deactivation}‘&lgfg T

We shall assume that for the study of diurnal variations we

may disregard slow changes in the volume of the solar flux, since
its regular short-term changes have a period of about 27 days.
Therefore we may consider the spectral flux of solar radiation
F, independent of time and seeck a stationary solution of our

Hoe
system of equations (1-5), in the fixed system of coordinates

which we are using.
-~ —The 30urce of heat, due to absorption of the shoitwéve solar ra-

dlatlon-- Qgrps 1 may be wr&%}en_ln the following form [13 21] /

_._,_,.__‘v

g, Sfﬂ,né;expfléd, n_(faﬁecxd,{
N 13004 j e ! ) j (11)

_45 f Sﬁ,o’l & ezp/éq' OzHozée..x)dJ]_”

where Fy, is the spectral flux of the shortwave solar radiation,

n,, Ha are the concentration and altitude scales of the a-th

component (a = 1, 2, 3 since here’exist basic _ !
components of the thermosphere N,, 0,, 0), X is the zenith an-
*gie‘af”tﬁé“guﬁ‘(when xm>f700‘iﬁ§iéédwofuSEE’X}'a more Coﬁpfei'\
;;£¥§¥§S§i©ﬁfi§“tﬁkﬁné%g%ilfi}tiﬁz?hﬁ%ﬂﬂ%gl??gﬁbgq?ax is the - /8
cross-section of the absorption of photons by-particles of

the o-th component. As was shown in [19], we may with good ac-
curacy, set EII = 0.3, At the same time, according to approximate
evaluations, ?I = 0.6, which is also close to the evaluation

of Johnson and Gotlieb [22].



In our calculations the flux Qg was approximated by a func-
tion in the form

[ _er_ @ = ﬂJ_p ex?f—&»f'? »eC x); 12)

where the constants A and B were. chosen to approximate QST(T)

to an exact ratio given/by equation (11).

The heat sink, due to infrared radiation at A = 63 ﬂm
was taken in accordance with [23] in the form:

‘ QjR = Nowp Ay

i LxPl-wi /AT ) S 1)
Gy + g exPlw KT v, exPCWGAT)

(13)

where Wos W are the energy and statistical weight gf the sub-
levels of the fundamental level of the oxygen atom [p, , ,; A;,
is the Einstein coefficient; E(r) is a screening functioﬁ taking
into account secondary absorption of infrared photons; in the
given calculation the simplifying assumption was made £ = 0.8
which at the altitudes examined was close to the results of cal-
culations in [24,25]. .

: The form of the ratio QST/p according to the exact

C e e A~ —e— — — — —— e m e e e -

Figure 1.

ConCerning other possible energy sources, calculations show
that over tne equator in magnetically calm periods, they are small

in comparison with the fundamental source Qgp. Blamont's data

[26] also confirms this, in that, even at the time of a magnetic } /9
storm, changes in temperature in the equatorial region were

small although in the auroral regions they were substantial even
~on magnetically calm days. A certain role may be played, in the

lower atmosphere, by energy brought by gravitational waves from

the mesophere [27-29]. The contribution of this source may be



studied within the confines of our model which we alsc intend to
make in the near future; however, in view of the significant diver-
gence of data on its value, still further study is required.

I.3, Effect of Tons. We shall examine in more detail the

matter of the effect of ions on the neutral components of the
thermosphere, since this effect (the so-called ionic braking or
ionic friction)}, as we shall see below, turns out to be very
substantial.

The velocity of the motion of ions in the thermosphere V&
may differ substantially from the velocity of the neutral parti-
cles'V due to the interaction of ions with the geomagnetic field:
B. This interaction is described by the Lorentz force entering
in the equation of motion for ions, which in rotation together
With?the;éarth yields a system of coordinates that may assume the
form:

7 v ST 5090 (7 5) L
LB f o e (o osR) 520, (7 5) -

y £ E—“"Vng;(‘?‘_{rz) +0J1~‘(‘IT,' ! gﬁ)’

m,

(14)

where w; = eB/m.c is the gyrofrequency of the ions;&@% is the
unit vector in the direction B; E is the electric field intensi-
ty. Upon the ratio of the two last terms in (14) depends whether
ions are entrained by the magnetic field (when w, >> vni) or by
neutral particles (when voi >>wy1). Actually, during examination
of large-scale movements in the equatorial ionosphere, the latter
two members are basic in value‘fSO}, and neglecting the rest and

assuming in the equatorial region Vi¢lf, we obtain:

(15)

. 1. ‘- / .
ey Ly VL&)



Since in the ionosphere at altitudes of h of, 100, 200 and
300 km, respectively, w; = 160, 190 and 210 sec” !, and v, i = 5800,

and 0.5 sec ! [31], then near 100 km, the ions are entrained by
neutral particles and at h > 130 km the ions practically do not

move across the lines of force B. Since we are considering h > 120
km, and moreover we are assuming that at h = 120 km, “V¢ = Qr#

(see below), we may assume with a good approx1mat10nVVl¢ = Qf*
where Q@ is the angular velocity of the earth's rotation, i.e.

the ions on the average move along the lines of force B.

The velocity of the exchange of pulses between particles of
different types o and B in a mixture of gases may be described
"'by terms in the form [32 331 ‘ _ |

idﬁ. m,.,a,d%qr nd%('u ~ U} (16)

where mog = m'mB/(m + m ) is the derived mass, U&B is the trans-
mission cross section of the pulse, Vo is the average thermal ve-
locity, n,, ng are the numerical densities of the particles. The
amount of energy transformed inte” heat in thls d1551pat10n process

is expressed in the form [33]:

- T .'77.}5 'U n
Rdﬁ\_ | ]r?n‘ \ ﬂoﬁ C)g(rl) -+ i ﬁ l'br' 712,) ) (17)

Since we may assume with great accuracy that the mass of the

neutral particles and the ions equals m; = m, = m, then the mass

is m.o - m/2. It is true since we are not con51der1ng the com-
position in deta1l, we are u51ng the average mass of the neutral
particles and the average mass of ions, which in view of the differ
ent variations of neutral particle and ion composition with altitud
- may differ somewhat,-but this difference and the error due to this
are small., Furthermore, taking into account the condition of quasi-
neutrality (which at h > 100 km, where the negative ions are ex-
ntxgﬁely_fgw,ﬂhashjhe_form_n+ = 1n_--the concentration of positive_ ___

e
ions is equal to the concentration of electrons), we may obtain for



~ the interaction of ions and neutral particles from (16) and Kl?):

) .ifn. :‘%—Péinﬂrne /77: —1_!') " (18)
‘/_Pé f?.e ('V' 'U') (19)

The matter of the cross-section of elastic collisions of
ions with neutral particles Oin Was considered recently in [34,35]

in which attention was paid to the polarization of neutral parti-

cles by ions and to the process of overcharging. According to
- = ~ “g 3 s s

[35], the value vi vin/n 9 Vi 10 “cm?®/sec {i.e. appromi

mately an order larger than corresponding value of neutral-neutral

collisions), and for collisions of ions with foreign neutral par-
ticles, Vin is not a function of temperature, 'but for collisions

with "native" neutral particles, it depends weakly upon it. Thus,

for example:
AOH °a) = 1,00-1079,

"ty M= Loeero % Vi, A ) = 08901075
y (0* 4 0) =075 107 Y (o*, 0) = 1,86+ 10‘9 |
( 7511000)0 3, V05t 0) = LITI0® (T /100
W ( Af v M) =2 10 ( T /1000)0033 of

where Ty = min(Ti/mi + Tn/mn). Taking into account these data,
we may accept with small'error}v$n = 1,0 » 10-°cm®/sec.

"The values n, (t n) were 3551gned by means of a certain \ /12

smoothlng of the data of the ionosphere model [36] and excludlng
nocturnal increases n,.. The function of ne(t,h) acgented in “the

present calculations is presented in Figure 2.

It should be noted that in [16] the term describing ion
friction was strongly overestimated and exerted practically no influ
ence on the solution.



I.4. Boundaries of the Examined Area and Boundary Condi-
tions. The upper boundary of the examined area 1, is desirably
placed as high as possible in order to completely encompass
the processes occurring here; however, it should lie in the _
region where the hydrodynamic equations are applicible. More-
over, 13 shouid not lie excessively low, so that heat fluxes and

mass fluxes acting upon it may be neglected, which substantially
simplifies the problem.

From experiméntsiit is known [37,38] that in the thermo-
sphere at altitudes higher than 250-350 km, the temperature ceaseg
to vary with altitude, which (within the limitations of the coef-
ficient of heat conductivity «(T,u)) also ensures the absence of
heat flux. |

We further assume that at sufficiently high altitudes the
horizontal component of velocity ceases to vary with altitude.

Thus, we have assumed the following two conditions for the

upper boundary: /
BTW” _
oL iy ——'O
‘ 20
’aﬂQI 0 (20)
Pk "ﬂ;

A third boundary condition is a consequence of the condition
of the absence of any mass flux at a sufficiently high altitude.
Its mathematical description requires additional treatment which

is presented in section 3.2.

‘The lower boundary T, should be set around 85-950 km, where

the diurnal variations of p and T are small, according to avail-
able experimental data, and where wind velocities are also small
in comparison with their velocities in the range of altitudes

10
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examined [37]. However, the presence of complex and insufficiently
| studied turbulent processes at altitudes h g 105 + 10 km, makes it
—-—advisable—in-the- first stage-to-study-the_region hy at a high
altitude (in the present calculations hy = 120 km). Then conditions
were set for the absence of diurnal variations of p and T, and

the absence of wind.

T(t,) = const,"
p(Ts) = const, (21)
Ve (Te) = RT,.

It is obvious that an increase in t, somewhat decreases the diur-

nal variations near the lower boundary of our model.

- Some preliminary study of the influence of lower boundary
conditions on the solution was conducted by means of a_éubgtan- o
tial vatriation of one of them in one of the variants of the cal- /14
culation, namely the condition p(T7,) = const was substituted by:

vT(TO) = q.
2. STATEMENT OF THE COMPUTATIONAL PROBLEM. !

As was already shown, we have assigned a constant flux ﬁf '
solar radiation M and we are seeking a time-independent solu-
tion of the system i "{6-10)J. Such a statidnary solution will
be constant in time!. In order to set up a4 clear mathematical

"and;computational problem, it is necessary to: |

‘(a) assign certain boundary conditions when T = fo (on the
lower boundary of the layer examined) and when t = t; (on the up-

per boundary);

'On another possibility, see supplement 2.

11



(b) select suitable initial data. After this we may expect
that the solution of the time problem will approach a certain

stationary regime.

2.1. Features of the Computational Problem. Inasmuch as we

shall now examine only two basic variables, our (two-dimensional)
gas-dynamic problem is rather simple. However, the following ra-
dical difference of this problem from the more traditional prob-
lems yields a non-trivial computational problem. The density in
the interval tp < t < t, varies by 103 - 10% times. The coef-

ficients of the kinematic viscosity (v) and thermal conductivity

{(A) vary by the same amount.

Here in no case should the behavior of 1% (or even 0.1%) of
the total mass be neglected. Much to the contrary.  The results
are more interesting (and more reliable) when the upper boundary
is far from the (arbitrarily determined) lower boundary. A
second, less significant feature 1is ‘inherent to¢ all equations of
the "boundary layer' type. The system in (6-10) is not a "noT -
mal' system of equations with partial derivatimes: it cannot be
solved relative to the derivatives of the unknown functions in
time. These features oblige great care in selecting boundary
and initial conditions and leave a substantial imprint on the

computational algorithm,

Finally, we note that the problem as a whole has a '"closed"
character: incipient disturbances are not carried beyond the
limits of the region examined. This circumstance increases the time

necessary for leaving a stationary regime.

2.2, Boundary Conditions. In the system in (6-10) there

are four differential equations, two of which are of the second
order in 7. It is necessary, therefore, to have six boundary

conditions,

12



In the lower boundary, when 7 = 1 , the following three con-

0
ditions were chosen (see paragraph 1.4):

(1) T(TO, ¢; t} = T0 = const.
(2) v (To’ by t) = T Q _ ,
,(3_‘9) V,I'._‘CT'Q, $; t) = Q or (3b) pCTQ." oy t) = jpo = const.

(2 is the angular velocity of the earth's rotation, (3a and 3b

are not equivalent).

A natural requirement for the positioning of the upper
boundary T is: for further increases in T the solution should
not vary significantly?. Thus, a correct statement of the boun-
dary condition above is related to the asymptotic solution of

the system in (6-10) when 1 » =,

As we have already stated (see paragraph 1.4), on the upper

boundary we assume:

TT3?§"—_ EEQ‘_.*.w_i“m
a0, 9B (20
The following considerations elucidate the concept of these con-

ditions. Let us assume that when r » «, the restrictions remain:

2In this, of course, we are digressing from the fact that the equa-
tions themselves (6 10) are correct to a reasonable accurary only
to a certain altitude h;. In an ideal mathematical problem, the
equations are naturally considered in the region 1ty < 1 < «, but
for an interpretation of the results, the region is restricted to

TOiT<R + h

13



)% (:?)1“ 9, b"": /?am)
an

o A,_'K \
Then ) %—/ Eﬂ) nd %—-( a~”) exponent1a117 —0. B
2 ”r n
Hence: | /q {;) ? 'B'L > /(, t)

f{§l50 exponentially’ rapidly).

The convergence of the heat and the pulse? fluxes to Zero
yields: 13 = 1, = 0. Finally, for a constant composition and
temperature - ;yﬂgwf¢q) \,3 4 —oy /&{yjand, this means that when
T + =, it is necessary that

27 _, % .,
. g1 O) L
Thus, (20) simulates the absence of fluxes through the upper

boundary for the heat and (horizontal component} pulse. For simila- /17

ting the conditions of the absence of mass flux:

&wyﬁ¢ﬁv@wr)0

! L —> oo

(22)
knowledge of the asymptotlc behavior of p and v, is required.
For p it is obvious: when 1 + = the density p diminishes ex-
ponentially. More accurately, if T + T_ and the molecular weight
M~ M_, then:

f{zﬁf):c@/—&n&&)); a=a (4t), b=bl¢t)

(23a)

or

3The peﬁmn**ycomponents of the pulse flux 1is:

T T o ';'Ua_
- + —.
v HWwJD?JT;’UZ, ?“a ¢ J\

14



SV, i |
ié(rﬁ,[ﬂ}t):&?;: —tﬂ_?/@t}?ﬁ ”5{(@0 Hf/"z,qﬁ); f,)

E~og  for y—oo (23b)

The velocity v_ behaves more precisely. Namely, during the

satisfaction of equation (22), v linearly approaches .7,

e ]

Vet = @igs) urbifge) € ) (24)

Taking into account (24) (see supplement 1), we select as the
final (sixth) boundary condition:
ﬂzﬁmhl{.wo.ﬂ

!’

01, a (25)
We note that (22) follows in turn from (24) and (23).

Thus the boundary condition (25) which we have set is an
approximate description of requirement (22) -- the absence of

mass flux at infinity.

NOTES

1. It is not mathematically obvious where it 1s necessary
to place the inadequate boundary conditions. A model examination
of this problem (in linearized equations and in fixed coefficients)
and numerical experiments consistently demand one more condition

above, but not below.

2. The trivial substitution of (22) in the condition

B = 0, as may easily be seen, is inadmissable.
ol = 1, ? ’

3. Condition (25) contains a second derivative; equations
(6-10) contain only the first derivative BVT/aT. In this sense
(25) is a non-standard condition. We note that the asymptotic (24)
is typical even for ordinary equations of the boundary layer (where
p is not a function of f), but there the problems of the sixth
boundary condition do not arise. -
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2.3. Selection of TInitial Data. Excluding the pressure

(p = B{(x) - p - T) in equations (6-9), we obtain a system of
four equations for four unknown:functions p, T, v and v¢.

BVT/aT does not enter them., It is clear, therefore, that one

may not assign v arbitrarily when t = 0. Further, p and T in
each moment of time (including even when t = 0) are related by the
relationship in (8).

Therefore as initial conditions for system (6-9), it is
sufficient to assign two functions T(r, ¢; 0) and v®(1, $; 0) and
the value of the density in the lower boundary p(tg, ¢; 0) when
t = 0.

In order to accelerate the determination process it is de-
sirable to have a preliminary coordination of the temperature
profiles and heat-evaluation. We selected the initial data by the
following means. For each variant we preliminarily solved a
simplified problem in which the horizontal winds are absent ({see
supplement 2). The solution of this problem-function
T{t, ¢) = p(7y, ¢) is used as the initial data. It is further

assumed that v¢(T’ ¢, 0} = 0 + 9. The determination time is, with

a reasonable degree of accuracy* from 10 to 30 days.

3. COMPUTATIONAL ALGORITHMS

Equations (6-9) are rewritten for the variables V¢, v T,
g(c = 1n p/po). Later, for numerical solution, the differential
equations were replaced by the differences. A simpler double-
layered implicit difference scheme was used. More accurately, the

quantities v T, o wereaassigned to the "integral' layers

¢”
t=t., and the quantity v_ was assigned to the semi-integral
layers_t é.tn,+.x/2,é_tn.f.¢/2f. The.dlfference‘scﬁeme‘;s““_'.

“*For example, |T(tIl + days) - T(t )| <0.01 T(t,).
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formally implicit: for determination of the quantities T 1

$+1, 0n+1, v?+1/2 (for the known Tn, Vg, g ), we obtain a sys-
tem of nonlinear difference equations. It is solved by itera-
tion wherein the terms corresponding to the angular derivatives

are taken from the aforementioned iterations. Thus, in fact,

v

we have in angular variables more or less complex (as a func- -
tion of ‘the number of iterations) implicit schemes with all of

the resultant consequences.
Let us dwell briefly on several details.

3.1. Difference Scheme. For an approximation of the deriva-

tives along the vertical in equations of the second order (7) and
(9), an implicit six-point scheme was selected. The difference

approximations are:

;‘3{ %Iiff-ﬁxf;u’{;—)*ﬁq:d*)[r:—iﬂ; B= % (26)

——

%;ET”ZI‘ [( ({m'*i 2]( JC’““’)TJS(L.H_‘?ZF fm s)_} (27)

Here the upper index "I" designates that the quantity is
taken at the upper layer t, * T, and the index "0" from the layer
t .. For equation (6), an implicit four-point scheme was used.

n
Equation (8) (on each layer) is written for two neighboring points.

The system is verticallynthpn?fdrmﬂ the points bunching up

downward?.

The angular derivatives are approximated analogously.

5 . . . - ) - . o ' ', B B . - N .
More accuratel instead of 1, z = z (7T zv >> gzt i
Y, s (t) C (TQ) o CTI.}) is used.

The z-spacing is constant.

- o

—_— e _ . 'y

-
3
o
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In the derivatives of the example, the calculations were

conducted on a 25 by 20 network for '"¢" and "t'', Tespegtively,: /

3.2. Organization of Iterations. In the recurrent "S + 1"

iteration, the "angular" derivativesdf/3¢ are taken from the

aforementioned iterations. More accurately:

D ot £y, 1) |

oY

— e ———

Thus -a system of nonlinear difference equations in the given iter-
ation degenerates into a one-dimensional system on each '"ray" /21
¢ = ¢y Corresponding one-dimensional boundary problems are

solved by several internal processes of successive approximations

--by iteration of '"¢'., The system may be stable (by linear cri-

teria) if the number of iterations Smax > 2. For Smax = 2, the
condition of stability is:

'%vm -ra]e.\@—z.\

where a is the speed of sound.

3.3. Linearization of difference equations. The one-dimension-

al difference system on the ray ideally (inasmuch‘as the known quan-
tities are close to the initial values of the aforementioned

layer) should be solved by Newton's method--with Eomplete-liheéf-
ization in each iteration. It is known that such a complete lin-
earization is almost never done, since it leads to a boundary
problem for a system of'engaged linear equations. In our case,

the equations are very strongly connected®, so that the simulta-
neous solution of linear equations is unaveoidable. Therefore we

shall produce a practically complete-linearization. For example,

50ne of the reasons for this is the absence ofia derivative with
respect to "t" in equation (8).
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in the successive j-th iteration member, the corresponding mem-

ber in difference'equations u(3c/3t) is written in the form:

( J Q%J G ]’ G0 94197
! vl v ["a_{j_
Here [30/31] is the corresponding resonance operator.

3.4,  Solution of Uniform Linear Boundary Problems on a Ray.

The system of linear difference equations solved in the j-th in-
ternal iteration (according to t) consists of two equations of
the first order and two equations of the second order. As each
(well-defined) system of difference equations, it may be solved
by the exclusion method with the selection of the main element by
column, or using some other universal algorithm. We used a cer-
tain variant of the exclusion method in which the order of exclu-
sion is prescribed’. Such an algorithm is more economical,
however its suitability in the final analysis is verified ex-

perimentally.
4. RESULTS AND THEIR TREATMENT

Two condltlons were c0n51dered—-the first for high and the

second for low solar activity. In the first case the flux F
measured by Hinteregger [39! was used for a medium-high solar
activity correspondlng to a flux of the decimetric solar radia-

[ S _?2
tton F10 7 150. 10

there are not now such reliable values of Fy s since in [39], the
results of the aforementioned author are placed in doubt. Therefore

for low solar activity, a value of Fj» was taken in which the

‘ watts/m "“Hz. For low solar activity

current in the ionization continuum was for each value of * one-
half that of the first case. O0Of course this is a rather crude

approximation since the variations of spectral flux in solar

7See supplement 3.
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activity are extremely complex [39,40].

The diurnal variations of temperature and density at alti- /23
tudes of 320 and 150 km are represented in Figure 3, where com-
plex curves plot the basic variant, the dot-dash curves plot
the variant with ion friction, 1/10-th the normal, the dots plot
the variant without horizontal motion (v¢ = 0}; moreover, the
dotted lines show the variations with additional viscosity, the
meaning of which will be shown below. The altitude profiles T

and p for the first case are presented in Figure 4.

From Figures 3 and 4 it is evident that the temperature at
320 km in the area of the isotherm varies from 900 to 1000 to
1200 to 1300 K, and the density, for example, from 2.5 - 10-1"
to 5 « 10°'% g/cm®. At 150 km the variation is significantly
less; however, we remember that it may be somewhat reduced here

due to approximate boundary conditions at 120 km.

It is also evident that the maximum temperatures and den-
sities occur at the samé time. Great diversification of phases
during certain hours is not observed®. We note immediately that
it is true that this result is obtained without taking into ac-

count the dynamic influence of the mesosphere.

An important conclusion may be drawn from a comparison of
the data of the different variants: there exists an extremely
strong influence of the motion {(including ion motion) upon the
thermal regime of the thermosphere producing it. Actually, if
there were no winds the thermosphere would heat up practically

to sunset (dotted line) and for stronger winds which would

8Such diversification of phases was assumed for the agreement of

data on the diurnal course of density according to the braking of
the satellites and on the diurnal course of temperature according
to incoherent scattering (see for example [41]).
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develop during low ion friction, the maximum T and p would be

close to midday (dot-dash line), then for the most probable /24
conditions (solid 1line) the max;mum T and p lie in 16-17 hours,

which is close to experimental data obtained by the method of

incoherent radiowave scattering [42-44].

As a consequence of this influence, there is also a second
important fact: the shape of the curves describing the diurnal
variations including the positions of maxima and minima may
vary for a change in conditions. Actually, the random variations
of the source and as a result, variations of wind, and also the
ion concentration--all this reflects on the variations of p and
T. (This is, as it were, the 'weather" of the thermosphere as
contrasted with '"climate', describing the most probably function).
For example, for ion braking amounting to 1/10-th the normal
(the dot-dash line), significantly earlier maxima of T and p take
place--around 13 hours--and a noticeably differing form of the
diurnal course (a very broad, almost symmetrical T, a sharper
maximum p, with a more rapid falling off of the latter after the
maximum; this also takes place to a lesser degree in the basic
variant). Reverse tendencies from the most probable diurnal course
are possible; for example, for an increase in the ion concentra-
tion, the maximum will be shifted to a later time and the arbitrary

course will approach the dotted line.

The fact of the variability of the shape of the diurnal varia-
tion curves and of the position of the maxima confirms well the
data of incoherent scattering and several other experimental re-
sults [42-44]. Also the absolute temperature value obtained in
these calculations [44] satisfactorily agree with experimental
data, while the values of density are somewhat higher than those
in [38], probably due to the approximation of u(h).

The interesting diurnal variations of wind obtained in the /25
model (Fig. 5--dependent upon time at altitudes of 320 and 150

km; Fig. 6--altitude profiles for maxima and minima: winds from
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east to west with velocities of 30-150 m/sec prevailing in the
morning and during the day (to the maximum of p and T) shift in
the east-west direction with velocities to 300-350 m/sec. As

a consequence of this the average daily velocity Ve is directed
from west to east. This fact was noted by King-Hele according
to the variations of the slope of the satellite orbit [45-47]
and which he called super-rotation (since this fact signifies
that the atmosphere at these altitudes on the average surpasses
the rotation of the earth). From these data it follows that the
reason for super-rotation (in any case, the basic reason) is the
influence of daily variations in the ion concentration through
ion breaking: the large ion concentration in the day leads to

a larger decrease in the daily values of winds than those of the
night, and the latter are directed from west to east. This ex-
planation affirms the data of the first variant of our calcula-
tions [16]. where the virtual absence of ionrbreaking produced an
absence of super—rotatioﬁ. The ratio of the mean daily velocity
of rotation of the atmosphere to its rotation velocity as a whole
together with the earth at an altitude of 320 km in our model 1is
A =1.15 - 1.2, and according to the data of King-Hele, A = 1.3
[47]. At an altitude of 150 km, in both cases, A = 1.1 (see Fig.
7).

The vertical velocities v are directed upward during the day
and downward during the night, and reach Z m/sec. They strongly
affect the thermal regime: adiabatic heating and cooling of the
gas during its lowering and rising in the gravitational field of
the earth with such velocities is comparable to the heating of
solar radiation. In particular, adiabatic heating during the de-
scent of the gas may explain the somewhat slower decrease in /26

T after the maximum in comparison with p, and also the beginning

of the entries of T after the minimum even at night when the

solar source 1s absent.

One more feature of the diurnal variations of winds in our

model which have already been noted in [16] is the formation of
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shock wave where the mach number calculated by the velocity of
motion of the gas relative to the heat source (v¢ *+ Q1) is great-
er than one. Such a shock wave takes place at around 0-3 hours.

Due to the presence of the shock wave a complete determination
was not managed, and the calculation was conducted up to the for-

mation of the shock wave.

A complete determination was obtained in a calculation with
additional viscocity which may be introduced on the basis of the
following hypothesis. Since the motions in the thermosphere take

7 104?as a function

place with large Reynolds numbers (Re = 10
of altitude), consequently the motions may be unstable and large-
scale turbulence may arise. We note that large-scale two-dimen-
sional turbulence in the troposphere (the elements of which are
cyclones and anti-cyclones) were studied in articles [48, 49].
Blamont's data [26] treats the possibility of the existence of
large-scale two-dimensional turbulence in the thermosphere which,
measured with a satellite, the temperature at an altitude of about
260 km, detected its irregular variations on the order of + 200
degrees (contributing to the diurnal variations), formed in an

area with a space scale on the order of 104 km. 1If the temperature
fluctuations are interpreted as a reflectiOn of ‘thelarge-scale two-
dimensional turbulence with a characteristic space scale L v 109

cm and a characteristic velocity\?‘i 5.103 cm/sec as a consequence
of this the coefficient of turbulent viscocity is taken as

VpaLynge 1012
Vr . EXQ_ then a iant is obtained (represented by the dotted | /27
??g 537’ e varian p y /f27

line in Fig: 3-6), in which the shock wave disappears but in the re-

T B e i e e -
cm /sec, substituting in _equation (2) the member . |

mainder the figure does not substantially change. This variant was
calculated to the complete determination of the perlodlc regime,. Wthh
as noted-above, occurred for 10-15 days.

In the calculations presented the effect of éhange of the lower
boundary conditions was studied: two variants were tested: 1)

p(t;) = cont; 2)fvT(TD) = 0. The first condition seems to be more
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_justified, although, as.is:known, it is best fulfilled at around’ _
90 km [37]. A comparison of these two variants shows that the influ-

ence of such variation of conditions on the lower boundary is very
substantial at an altitude of 150 km and negligibly small at 320 km.

The results of caiculafion of the second condition for low
solar activity are shown in Figs. 8 and 9. Here also are obtained
temperature values close to the experimental values from 600 to
800°K (cf. [43]); there are also some exag@krations of density in -
the upper part of the altitude range examined.

CONCLUSION

On the basis of the results of calculations presented and com-
parisons of these with the experimental data, it seems possible to
draw the following basic conclusions on the diurnal variations in
the atmosphere:

1. There exists an extremely strong interconnection between
horizontal and vertical motion of gas (including the motion of ions)
and variations of temperature and density in the thermosphere.

2. There is a mean dally west-east component of velocity
(super-rotation phenomenon)}, being a consequence of the influence
of the diurnal variations in the ion concentration to ion breaking /28
upon the motion of neutral particles.

3. The motions induced variations in the shape of curves des-
cribing the diurnal variations of temperature and density wherein
the maximum may for different conditions shift from its most pro-
bable position by several hours both to earlier hours and to later
hours. The most probable position of the maximum of the diurnal
course of temperature and density is 15-17 hours; the minimum is
at 2-3 hours local time.

A substantial difference in the phase of diurnal variatiomns
of temperature and density is unlikely. Yet, if it does take
place, its cause may be a dynamic influence of the mesosphere.

4. In the two-dimensional model, in the diurnal distribu-
tion of wind, a shock wave is produced in the area where the gas
moves relative to the peak force, with supersonic velocities. Shock
waves disappear in the presence of a large-scale horizontal tur-
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bulence (although the area of large horizontal wind gradients
remains).

5. As a comparison of experimental and calculated tempera-
ture values indicates, the fuller short-wave radiation is the basic
heat source in the equatorial thermosphere in the magnetically calm
periods.

SUPPLEMENT 1 /29

Notation (with no strict pretension to rigorousness) the
derivation of formulas (23) and (24).

From (8) and (10) we have (,:&,,—% (Pozj)(o,#’;t)

W __ ¢ A
-2 F 87T T -z

Hence et

It may be shown that ¢ approaches zero_exponentially:

E u—_t)l =Lle )" expl .

Further, from the discontinuity equation (6):

& 4 Yy D6, U 26
A Y A AT e T

Inserting (23}*, we obtain

G {,ﬂmgz)ﬂfb =A +6+65-1/

S
here -
S ———
| Ja ‘ _ ?L& ob ,_,a’l);v ” ’ 23]
Ly, Brgr RSy . & ”b _)*

*We are assuming, of course, that the asymptotic formulas may be
differentiated with respect to t and to ¢.
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Hence o o
' gexsla 2’+{r52(-z‘ﬁi)a§$)[0‘j(ﬂ} +8+€ Jexol-q }_fgz [}';, ¢ t)ol3) . ‘
] L ‘ o

Condition (22) yields: C = O.

For the remaining unique solution:

Vo (e, 08) Zuly ) ~Biigy) + Mit)]
) B ,

Here‘a!=7ﬂA;)&=*-7£ﬁ N . All e; (exponentially) approach

zero for T > o,
SUPPLEMENT 2

For finding the stationary solution of the system (6-10) it
seems possible to proceed thus. Set immediately the derivatives
with respect to time equal to zero and for the system obtained
solve the Cauchy problem for ¢ - since this is done in the theory
of the stationary boundary layer.

In such a process the variable ¢ plays the role of time,
so that this numerical problem 1s spatially one-dimensional, i.e.
much simpler than the overall (non-stationary) problem.

Here, of course, one should not be restricted to finding so-
lutions in the interval o 24 < 2II, but some number of evolutions

should be made for obtaining functions periodic ing¢ .

We made a detailed attempt in the first stage of the work.
It turned out that in this manner it is possible to find a solu-
tion which is a continuous function of ¢. A solution containing

shock waves may not be found in this manner, and we necessarily

returned to an examination of the non-stationary equations (6-10).

We note that the '"motion relative to¢ " procedure is always
applied in the solution of a simplified variation of the problem
- for the absence of horizontal winds. We select from the system
(6-10) equation (7) and set V¢ = Q.1g in the remaining equation.
Then the stationary solution in which we are interested is satis-

fied by equations
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(P 2@%)_
QB Ay T

P’f( w*“»%) %Z £ a-o) =Qer — Qg (S-1)
:g_g - ‘_?? P= B(-;)PT.

A sclution of this system was obtained with sufficient -

accuracy for 10-15 complete evolutions.

The functions obtained were used as initial conditions in
solution of the overall system (6-10}. /31

SUPPLEMENT 3%
Solution of One-Dimensional Difference Boundary Problems

1. In the solution of the boundary problem where a system
of linear difference equations, a transposition of boundary con-
ditions is performed implicitly or explicitly. We remember the
idea of boundary conditions transposition in the example of the
one-dimensional system of difference equations of the first order:

Ax ahnﬁo +5<ZZ&%):=0 . MrQiJ”.jﬂ._J (8-2)

Here ﬁ( and Bk are matrices, xk = a +kh, @t is the n-dimensional

vector: u «r

We may arbitrarily define Uevk) QRH for some k and ﬁ(x) will
be completely determined**,

Now let . some linear boundary conditions be given: e at the 1raf’c/32
p at the right (o + p = n). We shall examine all soclutions of

(s-2) satisfying the left boundary condition. They form a linear
space*** of dimension n-¢ = p. The same values of these solutions
in the points Xy " U(ﬁ{) are not arbitrary but belong to some space

*Calculated on a special computer.
#%1t is assumed that Ay and Bx are non-degenerate. -
*%%More exactly, for non-uniform boundary conditions - a hyperplane

{(not passing through zero).
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Equation (S-2).makes it possible, by knowing‘R+(xk], to find
R+(Xk+19 and in the same way to retrace the influence of the left
boundary conditions on the whole segment (a, b). When k= K we
obtain:

Y L

1) U(xk]C}{p-+ (xg) as a consequence of the left boundary con-
ditions; | _ ' ,
2) U(xg) satisfies p, with the right boundary conditions.

Hence U(xk) = Uk is found.

Now, using (S-2), we may succesSiveli;find
Hk~1’
We shall leave here without treatment of the computational

L SIP , U1

stability of the described procedure. We note only that for an “in-
verse Course'" in the general case it is necessary to avoidrgoing
out (as a result of errors of rounding off) of the spacesz+(xk):
beyond these spaces the solution of the Cauchy problem (from right
to left) is unstable.

2. The clearest idea of boundary conditions transfer results
in conditions where the space R+(xk) is found explicitly. 1In this
the duality may obtain:

a) Let R+(xk) be the '"basis'"*

b) Let R+(xk) be assigned as a system of equations.

In the case a) one should see to it that the bases are not /33

too obliquely angled. A corresponding process was suggested and
founded by Godunov {see [50 and 51].

Method b) is realized for a very extended particiilar case:

one difference equation of a second order? )
U Unet + b Uy +0 Upus = §

Ug=k oy Uy =

Equation (S-3) may be rewritten in the form of a system of

*The entire P+1 vector: one of the hyperplaces and p lie in the
space parallel to it.
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two_equations of the first order (S-2), setting

For (5-3) a method of solution called the "die' method (cf.
[52]) is often used.

In the first stage of this method a recurrent relation 1is

sought as a consequence of the left boundary condition:

2! %ZJM +"£,¢, fcoi 7431 5 (S-4)
In the second stage, from (D- 4), is found in the series
’7‘{ Koo, ... |

Rewrltlng (D-4) in the form
—?j#+'"r@f '{)Z/’fﬂ +-n£ ’

, we see that (S-4) is an

equation of the spaceI{~{x ) in the given case, a line in the

k+1
two-dimensional space R2.

On the other hand, we note that the "die'" method is a varia-
tion on the exclusion method for system (S-3) considered simply
as a system of linear equations. More accurately, this is the
simplest method of exclusion in which transposition of equations
for unknowns is not done.* This observation makes it possible /34

to regard the entire problem somewhat differently.

3) The system of linear difference equations with (linear)
boundary conditions behaves as the sum of of the specific system
of linear equations. 1t gives us some '"reliable'" method of solv-
ing linear systems satisfying the requirement for the necessary
quantities of calculations proportional to the number of points
(and not K2 or K3].

Such a requirement satisfies the Gauss exclusion method with
a selection of the main element by column. Undoubtedly, it is
suitable for the solution of any well-established difference bou-
dary problem for a not-too-large K**,
*Therefore the "die" is suitable to problem (S-3) not for all

a., BK, CK.

**The role of errors of curvature for large K is needed in a
separate study (cf. Sect. 38 with Ref. 52).
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The direct course of the method of exclusion is, in this, an
analog to the '"transfer of boundary conditions" from left to right,
although the R+(xK) are in explicit form and do not appear.

4) We shall write the algorithm used for our problem.

For the chosen linearization® on the ray in each "internal
iteration" we obtain a system of three related and different equa-
"

This equation of the type (D-3) is easily solved by the die
method. A system of three different equations corresponding to
equations (6), (8), and (9) is obtained. v, =U is written in
the form:

tions for V. T, b and a separate equation for v

" A p .
D A Om "l g+ Ky Un, gy o o rf +AD; =0

: (5-5.1)
 2) Ko Om Loy ey a3 Ty + Ly mer =0, (s-5.2) /35
: 3) ..g-r 7:—';3*51'7:“."[7’ -Tm,; "ﬂu Z/m—{*Ba 2\1’;,-;1 *FCy ZJ'Tm,'TBJé;Mt??,:O_- (S_ 5 . 3)
Here ¥k, L, A, B, C, D are functions of m.
nzfo,..“._ﬂJ—f in (1) and (2); m-12, 41| in (3).
Boundary conditions. o
Lower: 9, is given (or UO = 0),
T 1is given, (s-6)
O - — |
Upper: T = "'O L, -3 Ly iAo

The algorithm we used for solving the problems (§-5, S-6) consist
of the following steps.

Step One

It is assumed** that as a consequence of the boundary condi-

*In each iteration "according to 1" numbers containing v, in (6)
and (9) are taken from the afore-mentioned iteration. v

*% Tt is easily shown that as a consequence of the boundary
condition Ty = Ty.1, there are three relations connecting U, T, o
and U, T, ©/m. The possibility of solving them for U, T, o

is already assumed. m+1

m+1
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tion Tu = Tle, there are the following thref relations (cf. 5-4):
Ihw:%Mﬂ%ﬂhMﬁ;+%mﬁm+q&%
T;+1:Ogaﬂaéb+ﬁh&J7LL+J@moé”L+8lﬁmh
et = g lemd Ui + Patmy Ty darmdom +8alm),

Inserting them in (S55) it is not difficult to obtain recurrent

relations expressing L, B, vy, §/m as d, B,y, 6/m-1, As initial /36
values for m = U-1 we have:

Al =0, Paluen)=t forup=0, S0,

The remaining coefficients for m = u-1 are easily found from
equations (5-5.1) and (5-5.2) for m = u-1. Thus the first step
consists of successively finding d, B, vy, &, fromm = u-1 to

m = 0.

Step Two

As a consequence of the boundary condition
and the relation (S-7), there is the following connection between
the quantities in one point.

eff'm)Z/ *ﬁ’ fm) *J'Mm}ém +&;(’m) QJ (S -8)

The coefficients a4, By, Yiy 84 are also easily found in recurrent
form fromm = u-2 tom = 0.

In the third step, from relation (5-8) and the two lower boun-
dary conditions, GO is found.

0f course, in the fourth step from the recurrent formula (3-7)
the successively found U, T, ¢ for all = 1,2 ...U. The analog of
the algorithm described from the "die" method for equations (5- 3)

is obvious.

5. We shall interpret the described algorithm in the spirit
of the considerations of paragraph 1. The system (5-5) has in the
aggregate four orders. Its solution is completely determined by
its values in points m and m+l, however these values may not be

assigned arbitrarily: (5-5.1) and (5-5.2) yield two connections.

*Translation Note: Oricinal text fails to label S-7



We %Pall introduce the 6-dimensional space:

-‘hR"m-H(xfn‘);;.=H.“¥m ‘Um+1 A . |
!I.‘
my m+1
o mi%mel
All solutions of (‘S-5) contain in them the 4-dimensional

hyperplane of the given equations (S&S.l) and (s-5.2).

S

Those solutions of (S5-5) which satisfy the condition Tu =
T,-1 &re contained in RO (xm) of the three-dimensional hyperplane

R, (xp).

(S~7) is an equation of this hyperplane. In the selected
form of notation of these equations is the assumption that the
coefficient for U, T, b/m+l do not go to zero.

Solutions satisfying the two upper boundary conditions are
contained in the Ré(xm) two-dimensional hyperplane R24(xm). It
should be assigned by four equations.

As such, we have chosen (§-7) and (g-8). Thus, the first
two steps are the ''transfer of boundary conditions" from upper
to lower.

Step three is the use of lower boundary conditions.

The fourth step is finding the unknown. In this we auto-
matically f£ind ourselves for each m in R3+(xm), but (5-8) is not
used and could be violated in terms of errors of curvature. In

our calculations the boundary condition U -2U _;+U = 0 was

u-2
accurately fulfilled, i.e. this possibility was not realized.
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‘proximate formula,

20 150 200 250 A trw)
Fig 1. Function of thermosphere
heating q = QST - QTR as a func-

p
tion of time of day and of al-
titude. The solid curve is
according to the exact formula;
the dotted curve to the ap-
A: according
to flux of solar radiation for
average solar aSEivity

F10,7 = 15010 ““ watts
' MZ-H,
B: during low solar activity

(flux in an ionization continuum
(30-1050A) one half of A.
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T
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_/ —
AT TR a2 E B2
_ Local time (hrs)
Fig. 2. A simplified function

of electron concentration upon
time of day, taken for the
calculation of ion friction.
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Fig.3. Diurnal variations of

temperature and atmospheric

density at altitudes of 150

and 320 km during high solar

activity. -

— - basic variant

-.,-.-.- ion friction less
than 10 times

------- no horizontal motions
(Uy = 0)

....... introduction of
additional visco-
city.
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Fig. 4. Altitude profiles of
temperature (a} and density (b)
of the atmosphere.

same as for Fig.

3.

Notation
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Diurnal variations

#of winds at altitudes of 150
»'and 220 km during high solar

activity.

Fig.

3.

Notation same as for

Local time (hrs) 1 o

Ifig.
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6.

Altitude profiles of

wind during high ‘solar activity.

Notation same as for Fig.

3.
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Fig. 7. Ratio of velocity of rotation
of atmosphere to velocity of its rotation

tion together with the earthAA=Q91+vﬂ

1
@ = results of King-Hele measurements
0 = results of calculation.
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Fig. 8. Diurnal variations of atmospher4
temperature and density at altitudes of
150 and 320 km during low solar activi-
ty. Notation same as for Fig. 3.
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Fig. 9. Diurnal variations of
winds at altitudes of 150 and

320 km during low solar activity.
Notation same as for Fig. 3.
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